AP BIOLOGY

Equations and Formulas

AP® BIOLOGY EQUATIONS AND FORMULAS

Statistical Analysis and ProbabilityMeanStandard Deviation $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ $s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n-1}}$ Standard Error of the MeanChi-Square $SE_{\overline{x}} = \frac{s}{\sqrt{n}}$ $\chi^2 = \sum \frac{(o-e)^2}{e}$									 x̄ = sample mean n = sample size s = sample standard deviation (i.e., the sample-based estimate of the standard deviation of the population) o = observed results 		
Chi-Square Table									e = expected results		
p		Degrees of Freedom							$\Sigma = \text{sum of all}$		
value 0.05 0.01	1 3.84 6.63	2 5.99 9.21	3 7.81 11.34	4 9.49 13.28	5 11.07 15.09	6 12.59 16.81	7 14.07 18.48	8 15.51 20.09	Degrees of freedo distinct possible o		
Laws of Probability									Metric Prefixes		
If A and B are mutually exclusive, then: P(A or B) = P(A) + P(B) If A and B are independent, then: $P(A \text{ and } B) = P(A) \times P(B)$ Hardy-Weinberg Equations								<u>Factor</u> 10 ⁹ 10 ⁶ 10 ³ 10 ⁻¹ 10 ⁻²	<u>Prefix</u> giga mega kilo deci centi	<u>Symbol</u> G M k d c	
$p^{2} + 2pq + q^{2} = 1$ $p = \text{frequency of allele 1 in a population}$ $p + q = 1$ $q = \text{frequency of allele 2 in a population}$							$ \begin{array}{r} 10^{-3} \\ 10^{-6} \\ 10^{-9} \\ 10^{-12} \end{array} $	milli micro nano pico	m μ n p		

Mode = value that occurs most frequently in a data set

Median = middle value that separates the greater and lesser halves of a data set

Mean = sum of all data points divided by number of data points

Range = value obtained by subtracting the smallest observation (sample minimum) from the greatest (sample maximum)

Rate	<u>Water Potential</u> (Ψ)				
$\frac{\textbf{Rate}}{\frac{dY}{dt}}$	dY = amount of change	$\Psi = \Psi_{\rm P} + \Psi_{\rm S}$			
	dt = change in time	$\Psi_{\rm p}$ = pressure potential			
Population Growth	B = birth rate	$\Psi_{\rm S}$ = solute potential			
$\frac{dN}{dt} = B - D$	D = death rate	The water potential will be equal to the solute potential of a solution in an open container because the pressure potential of			
Exponential Growth	N = population size				
$\frac{dN}{dt} = r_{\max}N$	K = carrying capacity	the solution in an open container is zero.			
	$r_{\rm max}$ = maximum per capita	The Solute Potential of a Solution			
$\frac{Logistic Growth}{\frac{dN}{dt}} = r_{\max} N \left(\frac{K - N}{K} \right)$	growth rate of population	$\Psi_{\rm S} = -iCRT$			
$\frac{dt}{dt} = r_{\max} \left[\sqrt{\frac{K}{K}} \right]$		i = ionization constant (1.0 for sucrose			
Simpson's Diversity Index	because sucrose does not ionize in water)				
Diversity Index = $1 - \sum \left(\frac{n}{N}\right)^2$	C = molar concentration				
n = total number of organisms o	R = pressure constant (R = 0.0831 liter bars/mole K)				
N = total number of organisms of	T = temperature in Kelvin (°C + 273)				
		$\mathbf{pH} = -\log[\mathrm{II^+}]$			
	Surface Area and Volume				
Saula a Arras alla Salarra		r = radius			
Surface Area of a Sphere $SA = 4\pi r^2$	<u>Volume of a Sphere</u> $V = \frac{4}{3}\pi r^3$	l = length			
Surface Area of a Rectangular	Solid Volume of a Rectangul	ar Solid $h = $ height			
SA = 2lh + 2lw + 2wh	V = lwh	w = width			
Surface Area of a Cylinder $SA = 2\pi rh + 2\pi r^2$	<u>Volume of a Cylinder</u> $V = \pi r^2 h$	s = length of one side of a cube			
Surface Area of a Cube	Volume of a Cube	SA = surface area			
$SA = 6s^2$	$V = s^3$	V = volume			